Text Generation
Transformers
Safetensors
English
llama
fireplace
fireplace-2
valiant
valiant-labs
llama-3.1
llama-3.1-instruct
llama-3.1-instruct-8b
llama-3
llama-3-instruct
llama-3-instruct-8b
8b
function-calling
sql
database
data-visualization
matplotlib
json
conversational
chat
instruct
Eval Results
text-generation-inference
banner (#3)
Browse files- banner (e996546139431028af920a0e9bbc7957b6b139cc)
Co-authored-by: Zoey W <[email protected]>
README.md
CHANGED
|
@@ -1,139 +1,139 @@
|
|
| 1 |
-
---
|
| 2 |
-
language:
|
| 3 |
-
- en
|
| 4 |
-
pipeline_tag: text-generation
|
| 5 |
-
tags:
|
| 6 |
-
- fireplace
|
| 7 |
-
- fireplace-2
|
| 8 |
-
- valiant
|
| 9 |
-
- valiant-labs
|
| 10 |
-
- llama
|
| 11 |
-
- llama-3.1
|
| 12 |
-
- llama-3.1-instruct
|
| 13 |
-
- llama-3.1-instruct-8b
|
| 14 |
-
- llama-3
|
| 15 |
-
- llama-3-instruct
|
| 16 |
-
- llama-3-instruct-8b
|
| 17 |
-
- 8b
|
| 18 |
-
- function-calling
|
| 19 |
-
- sql
|
| 20 |
-
- database
|
| 21 |
-
- data-visualization
|
| 22 |
-
- matplotlib
|
| 23 |
-
- json
|
| 24 |
-
- conversational
|
| 25 |
-
- chat
|
| 26 |
-
- instruct
|
| 27 |
-
model_type: llama
|
| 28 |
-
license: llama3.1
|
| 29 |
-
---
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
 prompt format. The example script below can be used as a starting point for general chat with Llama 3.1 and also includes the different special tokens used for Fireplace 2's added features:
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
import transformers
|
| 59 |
-
import torch
|
| 60 |
-
|
| 61 |
-
model_id = "ValiantLabs/Llama3.1-8B-Fireplace2"
|
| 62 |
-
|
| 63 |
-
pipeline = transformers.pipeline(
|
| 64 |
-
"text-generation",
|
| 65 |
-
model=model_id,
|
| 66 |
-
model_kwargs={"torch_dtype": torch.bfloat16},
|
| 67 |
-
device_map="auto",
|
| 68 |
-
)
|
| 69 |
-
|
| 70 |
-
messages = [
|
| 71 |
-
{"role": "system", "content": "You are Fireplace, an expert technical assistant."},
|
| 72 |
-
{"role": "user", "content": "Hi, can you explain local area networking to me?"}, #general Llama 3.1 chat
|
| 73 |
-
#{"role": "user", "content": "I have the following SQL table: employees (job_id VARCHAR, salary INTEGER)\n\nCan you find all employees with a salary above $75000?<|request_sql|>"}, #for SQL query
|
| 74 |
-
#{"role": "user", "content": "{""name"": ""get_news_headlines"",""description"": ""Get the latest news headlines"",""parameters"": {""type"": ""object"",""properties"": {""country"": {""type"": ""string"",""description"": ""The country for which news headlines are to be retrieved""}},""required"": [""country""]}}\n\nHi, can you get me the latest news headlines for the United States?<|request_function_call|>"}, # for function call
|
| 75 |
-
#{"role": "user", "content": "Show me an example of a histogram with a fixed bin size. Use attractive colors.<|request_matplotlib|>"}, #for data visualization
|
| 76 |
-
#{"role": "user", "content": "Can you define the word 'presence' for me, thanks!<|request_json|>"}, #for JSON output
|
| 77 |
-
]
|
| 78 |
-
|
| 79 |
-
outputs = pipeline(
|
| 80 |
-
messages,
|
| 81 |
-
max_new_tokens=512,
|
| 82 |
-
)
|
| 83 |
-
print(outputs[0]["generated_text"][-1])
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
While Fireplace 2 is trained to minimize incorrect structured outputs, they can still occur occasionally. Production uses of Fireplace 2 should verify the structure of all model outputs and remove any unneeded components of the output.
|
| 87 |
-
|
| 88 |
-
For handling of function call responses, use the [Llama 3.1 Instruct tool response style.](https://huggingface.co/blog/llama31#custom-tool-calling)
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
## Special Tokens
|
| 92 |
-
|
| 93 |
-
Fireplace 2 utilizes special tokens applied to the Llama 3.1 tokenizer:
|
| 94 |
-
|
| 95 |
-
- <|request_json|>
|
| 96 |
-
- <|start_json|>
|
| 97 |
-
- <|end_json|>
|
| 98 |
-
- <|request_sql|>
|
| 99 |
-
- <|start_sql|>
|
| 100 |
-
- <|end_sql|>
|
| 101 |
-
- <|request_matplotlib|>
|
| 102 |
-
- <|start_matplotlib|>
|
| 103 |
-
- <|end_matplotlib|>
|
| 104 |
-
- <|request_function_call|>
|
| 105 |
-
- <|start_function_call|>
|
| 106 |
-
- <|end_function_call|>
|
| 107 |
-
|
| 108 |
-
These are supplemental to the existing special tokens used by Llama 3.1, such as <|python_tag|> and <|start_header_id|>. Fireplace 2 has been trained using the Llama 3.1 Instruct chat structure, with new special tokens added within the conversation.
|
| 109 |
-
|
| 110 |
-
The 'request' tokens are used by the user to request a specific type of structured output. They should be appended to the end of the user's message and can be alternated with normal chat responses throughout the conversation.
|
| 111 |
-
|
| 112 |
-
## The Model
|
| 113 |
-
Fireplace 2 is built on top of Llama 3.1 8b Instruct.
|
| 114 |
-
|
| 115 |
-
This version of Fireplace 2 uses data from the following datasets:
|
| 116 |
-
|
| 117 |
-
- [glaiveai/glaive-function-calling-v2](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2)
|
| 118 |
-
- [b-mc2/sql-create-context](https://huggingface.co/datasets/b-mc2/sql-create-context)
|
| 119 |
-
- [sequelbox/Cadmium](https://huggingface.co/datasets/sequelbox/Cadmium)
|
| 120 |
-
- [sequelbox/Harlequin](https://huggingface.co/datasets/sequelbox/Harlequin)
|
| 121 |
-
- [migtissera/Tess-v1.5](https://huggingface.co/datasets/migtissera/Tess-v1.5)
|
| 122 |
-
- [LDJnr/Pure-Dove](https://huggingface.co/datasets/LDJnr/Pure-Dove)
|
| 123 |
-
|
| 124 |
-
Additional capabilities will be added to future releases.
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-

|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
Fireplace 2 is created by [Valiant Labs.](http://valiantlabs.ca/)
|
| 131 |
-
|
| 132 |
-
[Check out our HuggingFace page for Shining Valiant 2 and our other models!](https://huggingface.co/ValiantLabs)
|
| 133 |
-
|
| 134 |
-
[Follow us on X for updates on our models!](https://twitter.com/valiant_labs)
|
| 135 |
-
|
| 136 |
-
We care about open source.
|
| 137 |
-
For everyone to use.
|
| 138 |
-
|
| 139 |
We encourage others to finetune further from our models.
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
pipeline_tag: text-generation
|
| 5 |
+
tags:
|
| 6 |
+
- fireplace
|
| 7 |
+
- fireplace-2
|
| 8 |
+
- valiant
|
| 9 |
+
- valiant-labs
|
| 10 |
+
- llama
|
| 11 |
+
- llama-3.1
|
| 12 |
+
- llama-3.1-instruct
|
| 13 |
+
- llama-3.1-instruct-8b
|
| 14 |
+
- llama-3
|
| 15 |
+
- llama-3-instruct
|
| 16 |
+
- llama-3-instruct-8b
|
| 17 |
+
- 8b
|
| 18 |
+
- function-calling
|
| 19 |
+
- sql
|
| 20 |
+
- database
|
| 21 |
+
- data-visualization
|
| 22 |
+
- matplotlib
|
| 23 |
+
- json
|
| 24 |
+
- conversational
|
| 25 |
+
- chat
|
| 26 |
+
- instruct
|
| 27 |
+
model_type: llama
|
| 28 |
+
license: llama3.1
|
| 29 |
+
---
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+

|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
Fireplace 2 is a chat model, adding helpful structured outputs to Llama 3.1 8b Instruct.
|
| 36 |
+
- an expansion pack of supplementary outputs - request them at will within your chat:
|
| 37 |
+
- Inline function calls
|
| 38 |
+
- SQL queries
|
| 39 |
+
- JSON objects
|
| 40 |
+
- Data visualization with matplotlib
|
| 41 |
+
- Mix normal chat and structured outputs within the same conversation.
|
| 42 |
+
- Fireplace 2 supplements the existing strengths of Llama 3.1, providing inline capabilities within the Llama 3 Instruct format.
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
## Version
|
| 46 |
+
|
| 47 |
+
This is the **2024-07-23** release of Fireplace 2 for Llama 3.1 8b.
|
| 48 |
+
|
| 49 |
+
We're excited to bring further upgrades and releases to Fireplace 2 in the future.
|
| 50 |
+
|
| 51 |
+
Help us and recommend Fireplace 2 to your friends!
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
## Prompting Guide
|
| 55 |
+
Fireplace uses the [Llama 3.1 Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) prompt format. The example script below can be used as a starting point for general chat with Llama 3.1 and also includes the different special tokens used for Fireplace 2's added features:
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
import transformers
|
| 59 |
+
import torch
|
| 60 |
+
|
| 61 |
+
model_id = "ValiantLabs/Llama3.1-8B-Fireplace2"
|
| 62 |
+
|
| 63 |
+
pipeline = transformers.pipeline(
|
| 64 |
+
"text-generation",
|
| 65 |
+
model=model_id,
|
| 66 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
| 67 |
+
device_map="auto",
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
messages = [
|
| 71 |
+
{"role": "system", "content": "You are Fireplace, an expert technical assistant."},
|
| 72 |
+
{"role": "user", "content": "Hi, can you explain local area networking to me?"}, #general Llama 3.1 chat
|
| 73 |
+
#{"role": "user", "content": "I have the following SQL table: employees (job_id VARCHAR, salary INTEGER)\n\nCan you find all employees with a salary above $75000?<|request_sql|>"}, #for SQL query
|
| 74 |
+
#{"role": "user", "content": "{""name"": ""get_news_headlines"",""description"": ""Get the latest news headlines"",""parameters"": {""type"": ""object"",""properties"": {""country"": {""type"": ""string"",""description"": ""The country for which news headlines are to be retrieved""}},""required"": [""country""]}}\n\nHi, can you get me the latest news headlines for the United States?<|request_function_call|>"}, # for function call
|
| 75 |
+
#{"role": "user", "content": "Show me an example of a histogram with a fixed bin size. Use attractive colors.<|request_matplotlib|>"}, #for data visualization
|
| 76 |
+
#{"role": "user", "content": "Can you define the word 'presence' for me, thanks!<|request_json|>"}, #for JSON output
|
| 77 |
+
]
|
| 78 |
+
|
| 79 |
+
outputs = pipeline(
|
| 80 |
+
messages,
|
| 81 |
+
max_new_tokens=512,
|
| 82 |
+
)
|
| 83 |
+
print(outputs[0]["generated_text"][-1])
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
While Fireplace 2 is trained to minimize incorrect structured outputs, they can still occur occasionally. Production uses of Fireplace 2 should verify the structure of all model outputs and remove any unneeded components of the output.
|
| 87 |
+
|
| 88 |
+
For handling of function call responses, use the [Llama 3.1 Instruct tool response style.](https://huggingface.co/blog/llama31#custom-tool-calling)
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
## Special Tokens
|
| 92 |
+
|
| 93 |
+
Fireplace 2 utilizes special tokens applied to the Llama 3.1 tokenizer:
|
| 94 |
+
|
| 95 |
+
- <|request_json|>
|
| 96 |
+
- <|start_json|>
|
| 97 |
+
- <|end_json|>
|
| 98 |
+
- <|request_sql|>
|
| 99 |
+
- <|start_sql|>
|
| 100 |
+
- <|end_sql|>
|
| 101 |
+
- <|request_matplotlib|>
|
| 102 |
+
- <|start_matplotlib|>
|
| 103 |
+
- <|end_matplotlib|>
|
| 104 |
+
- <|request_function_call|>
|
| 105 |
+
- <|start_function_call|>
|
| 106 |
+
- <|end_function_call|>
|
| 107 |
+
|
| 108 |
+
These are supplemental to the existing special tokens used by Llama 3.1, such as <|python_tag|> and <|start_header_id|>. Fireplace 2 has been trained using the Llama 3.1 Instruct chat structure, with new special tokens added within the conversation.
|
| 109 |
+
|
| 110 |
+
The 'request' tokens are used by the user to request a specific type of structured output. They should be appended to the end of the user's message and can be alternated with normal chat responses throughout the conversation.
|
| 111 |
+
|
| 112 |
+
## The Model
|
| 113 |
+
Fireplace 2 is built on top of Llama 3.1 8b Instruct.
|
| 114 |
+
|
| 115 |
+
This version of Fireplace 2 uses data from the following datasets:
|
| 116 |
+
|
| 117 |
+
- [glaiveai/glaive-function-calling-v2](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2)
|
| 118 |
+
- [b-mc2/sql-create-context](https://huggingface.co/datasets/b-mc2/sql-create-context)
|
| 119 |
+
- [sequelbox/Cadmium](https://huggingface.co/datasets/sequelbox/Cadmium)
|
| 120 |
+
- [sequelbox/Harlequin](https://huggingface.co/datasets/sequelbox/Harlequin)
|
| 121 |
+
- [migtissera/Tess-v1.5](https://huggingface.co/datasets/migtissera/Tess-v1.5)
|
| 122 |
+
- [LDJnr/Pure-Dove](https://huggingface.co/datasets/LDJnr/Pure-Dove)
|
| 123 |
+
|
| 124 |
+
Additional capabilities will be added to future releases.
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+

|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
Fireplace 2 is created by [Valiant Labs.](http://valiantlabs.ca/)
|
| 131 |
+
|
| 132 |
+
[Check out our HuggingFace page for Shining Valiant 2 and our other models!](https://huggingface.co/ValiantLabs)
|
| 133 |
+
|
| 134 |
+
[Follow us on X for updates on our models!](https://twitter.com/valiant_labs)
|
| 135 |
+
|
| 136 |
+
We care about open source.
|
| 137 |
+
For everyone to use.
|
| 138 |
+
|
| 139 |
We encourage others to finetune further from our models.
|