#!/usr/bin/env python # Ref: https://github.com/huggingface/transformers/blob/v4.51.3/src/transformers/models/qwen2/configuration_qwen2.py # Copyright (c) Institute of Artificial Intelligence (TeleAI), China Telecom, 2025. All Rights Reserved. """RuyiQwen2 model configuration""" import os import shutil from transformers.configuration_utils import PretrainedConfig from transformers.modeling_rope_utils import rope_config_validation from transformers.utils import logging logger = logging.get_logger(__name__) class RuyiQwen2Config(PretrainedConfig): model_type = "ruyi_qwen2" keys_to_ignore_at_inference = ["past_key_values"] # Default tensor parallel plan for base model `RuyiQwen2` base_model_tp_plan = { "layers.*.self_attn.q_proj": "colwise", "layers.*.self_attn.k_proj": "colwise", "layers.*.self_attn.v_proj": "colwise", "layers.*.self_attn.o_proj": "rowwise", "layers.*.mlp.gate_proj": "colwise", "layers.*.mlp.up_proj": "colwise", "layers.*.mlp.down_proj": "rowwise", "eelayers.*.self_attn.q_proj": "colwise", "eelayers.*.self_attn_k_proj": "colwise", "eelayers.*.self_attn_v_proj": "colwise", "eelayers.*.self_attn_o_proj": "rowwise", "eelayers.*.mlp.gate_proj": "colwise", "eelayers.*.mlp.up_proj": "colwise", "eelayers.*.mlp.down_proj": "rowwise" } base_model_pp_plan = { "embed_tokens": (["input_ids"], ["inputs_embeds"]), "layers": (["hidden_states", "attention_mask"], ["hidden_states"]), "eelayers": (["hidden_states", "attention_mask"], ["hidden_states"]), "norm": (["hidden_states"], ["hidden_states"]), } def __init__( self, vocab_size=151936, hidden_size=4096, intermediate_size=22016, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=32, hidden_act="silu", max_position_embeddings=32768, initializer_range=0.02, rms_norm_eps=1e-6, use_cache=True, tie_word_embeddings=False, rope_theta=10000.0, rope_scaling=None, use_sliding_window=False, sliding_window=4096, max_window_layers=28, attention_dropout=0.0, shared_heads=False, default_early_exit_point=-1, # [0, num_hidden_layers-1], -1 = num_hidden_layers - 1 early_exit_points=list(range(1, 32, 2)), **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.use_sliding_window = use_sliding_window self.sliding_window = sliding_window # we check `use_sliding_window` in the modeling code self.max_window_layers = max_window_layers # for backward compatibility if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.attention_dropout = attention_dropout # Validate the correctness of rotary position embeddings parameters # BC: if there is a 'type' field, move it to 'rope_type'. if self.rope_scaling is not None and "type" in self.rope_scaling: self.rope_scaling["rope_type"] = self.rope_scaling["type"] rope_config_validation(self) self.shared_heads = shared_heads self.default_early_exit_point = default_early_exit_point self.early_exit_points = early_exit_points self.auto_map = { "AutoConfig": "configuration_ruyi_qwen2.RuyiQwen2Config", "AutoModel": "modeling_ruyi_qwen2.RuyiQwen2Model", "AutoModelForCausalLM": "modeling_ruyi_qwen2.RuyiQwen2ForCausalLM" } super().__init__( tie_word_embeddings=tie_word_embeddings, **kwargs, ) def save_pretrained(self, save_directory, **kwargs): super().save_pretrained(save_directory, **kwargs) shutil.copyfile( os.path.abspath(__file__), os.path.join(save_directory, "configuration_ruyi_qwen2.py") )