--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-large tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: Docket_Classification_NER_04_15 results: [] --- # Docket_Classification_NER_04_15 This model is a fine-tuned version of [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5623 - Precision: 0.8737 - Recall: 0.8823 - F1: 0.8760 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:| | No log | 1.0 | 21 | 0.4220 | 0.8540 | 0.8819 | 0.8621 | | No log | 2.0 | 42 | 0.4700 | 0.8680 | 0.8596 | 0.8620 | | No log | 3.0 | 63 | 0.4701 | 0.8683 | 0.8705 | 0.8682 | | No log | 4.0 | 84 | 0.5636 | 0.8680 | 0.8765 | 0.8698 | | No log | 4.7901 | 100 | 0.5623 | 0.8737 | 0.8823 | 0.8760 | ### Framework versions - Transformers 4.51.1 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1