---
tags:
- fp4
- vllm
language:
- en
- de
- fr
- it
- pt
- hi
- es
- th
pipeline_tag: text-generation
license: apache-2.0
base_model: Qwen/Qwen3-235B-A22B
---
# Qwen3-235B-A22B-NVFP4
## Model Overview
- **Model Architecture:** Qwen/Qwen3-235B-A22B
- **Input:** Text
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** FP4
- **Activation quantization:** FP4
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
- **Release Date:** 10/29/2025
- **Version:** 1.0
- **Model Developers:** RedHatAI
This model is a quantized version of [Qwen/Qwen3-235B-A22B](https://huggingface.co/Qwen/Qwen3-235B-A22B).
It was evaluated on a several tasks to assess the its quality in comparison to the unquatized model.
### Model Optimizations
This model was obtained by quantizing the weights and activations of [Qwen/Qwen3-235B-A22B](https://huggingface.co/Qwen/Qwen3-235B-A22B) to FP4 data type, ready for inference with vLLM>=0.9.1
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%.
Only the weights and activations of the linear operators within transformers blocks are quantized using [LLM Compressor](https://github.com/vllm-project/llm-compressor).
## Deployment
### Use with vLLM
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "RedHatAI/Qwen3-235B-A22B-NVFP4"
number_gpus = 1
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
```
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
## Creation
This model was created by applying [LLM Compressor with calibration samples from UltraChat](https://github.com/vllm-project/llm-compressor/blob/main/examples/quantization_w4a4_fp4/llama3_example.py), as presented in the code snipet below.
```python
from datasets import load_dataset
from llmcompressor import oneshot
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
from llmcompressor.modeling.prepare import replace_modules_for_calibration
MODEL_ID = "Qwen/Qwen3-235B-A22B"
#Load model.
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID, device_map=None, torch_dtype="auto"
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
print(model)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
DATASET_ID = "HuggingFaceH4/ultrachat_200k"
DATASET_SPLIT = "train_sft"
NUM_CALIBRATION_SAMPLES = 256
MAX_SEQUENCE_LENGTH = 1024
# --- Replace MoE modules for calibration ---
model = replace_modules_for_calibration(model, calibrate_all_experts=False)
# Load dataset and preprocess.
ds = load_dataset(DATASET_ID, split=f"{DATASET_SPLIT}[:{NUM_CALIBRATION_SAMPLES}]")
ds = ds.shuffle(seed=42)
def preprocess(example):
return {
"text": tokenizer.apply_chat_template(
example["messages"],
tokenize=False,
)
}
ds = ds.map(preprocess)
# Tokenize inputs.
def tokenize(sample):
return tokenizer(
sample["text"],
padding=False,
max_length=MAX_SEQUENCE_LENGTH,
truncation=True,
add_special_tokens=False,
)
ds = ds.map(tokenize, remove_columns=ds.column_names)
recipe = QuantizationModifier(
targets="Linear",
scheme="NVFP4",
ignore=["re:.*lm_head.*", "re:.*mlp.gate$", "re:.*self_attn",
],
)
# Save to disk in compressed-tensors format.
SAVE_DIR = MODEL_ID.rstrip("/").split("/")[-1] + "-NVFP4"
# Apply quantization.
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=MAX_SEQUENCE_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
output_dir=SAVE_DIR,
pipeline="sequential",
sequential_targets=["Qwen3MoeDecoderLayer"],
calibrate_moe_context=True,
)
# Save to disk in compressed-tensors format.
model.save_pretrained(SAVE_DIR, save_compressed=True)
tokenizer.save_pretrained(SAVE_DIR)
```
## Evaluation
This model was evaluated on the well-known OpenLLM v1, OpenLLM v2 and HumanEval_64 benchmarks using [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness). The Reasoning evals were done using [ligheval](https://github.com/neuralmagic/lighteval).
### Accuracy
| Category |
Metric |
Qwen/Qwen3-235B-A22B |
RedHatAI/Qwen3-235B-A22B-NVFP4 (this model) |
Recovery |
| OpenLLM V1 |
arc_challenge |
73.38 |
72.61 |
98.95 |
| gsm8k |
85.14 |
86.43 |
101.52 |
| hellaswag |
86.86 |
86.67 |
99.78 |
| mmlu |
86.36 |
85.76 |
99.30 |
| truthfulqa_mc2 |
60.58 |
60.09 |
99.19 |
| winogrande |
80.74 |
80.90 |
100.20 |
| Average |
78.84 |
78.74 |
99.87 |
| OpenLLM V2 |
BBH |
63.67 |
63.81 |
100.22 |
| MMLU-Pro |
58.23 |
57.99 |
99.59 |
| MuSR |
43.25 |
42.99 |
99.40 |
| IFEval |
88.25 |
88.25 |
100.00 |
| GPQA |
29.28 |
28.94 |
98.84 |
| Average |
56.54 |
56.40 |
99.75 |
| Reasoning |
GPQA (Diamond, 0-shot) |
72.22 |
69.19 |
95.80 |
| Math-500 (0-shot) |
95.00 |
94.20 |
99.16 |
| Average |
83.61 |
81.70 |
97.72 |
| Coding |
HumanEval_64 pass@2 |
92.56 |
94.73 |
102.34 |
### Reproduction
The results were obtained using the following commands:
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Qwen3-235B-A22B-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
--apply_chat_template \
--fewshot_as_multiturn \
--tasks openllm \
--batch_size auto
```
#### OpenLLM v2
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Qwen3-235B-A22B-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
--apply_chat_template \
--fewshot_as_multiturn \
--tasks leaderboard \
--batch_size auto
```
#### HumanEval_64
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Qwen3-235B-A22B-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
--apply_chat_template \
--fewshot_as_multiturn \
--tasks humaneval_64_instruct \
--batch_size auto
```