update vtp-l
Browse files- README.md +246 -0
- config.json +48 -0
- model.safetensors +3 -0
README.md
ADDED
|
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<div align="center">
|
| 2 |
+
|
| 3 |
+
<img src="figures/logo.png" alt="Logo" width="200"/>
|
| 4 |
+
|
| 5 |
+
<h2> Towards Scalable Pre-training of Visual Tokenizers for Generation </h2>
|
| 6 |
+
|
| 7 |
+
[Jingfeng Yao](https://github.com/JingfengYao)<sup>1</sup>, [Yuda Song](https://github.com/IDKiro)<sup>2</sup>, Yucong Zhou<sup>2</sup>, [Xinggang Wang](https://xwcv.github.io/)<sup>1,*</sup>
|
| 8 |
+
|
| 9 |
+
<sup>1</sup>Huazhong University of Science and Technology
|
| 10 |
+
<sup>2</sup>MiniMax
|
| 11 |
+
<sup>*</sup>Corresponding author: [email protected]
|
| 12 |
+
|
| 13 |
+
***Work still in Progress.***
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
[](https://arxiv.org/abs/2512.13687)
|
| 17 |
+
|
| 18 |
+
<img src="figures/abs.png" alt="Abstract Figure" width="900"/>
|
| 19 |
+
|
| 20 |
+
</div>
|
| 21 |
+
|
| 22 |
+
## News
|
| 23 |
+
|
| 24 |
+
- **[2025.12.16]** We release our [technical report](https://arxiv.org/abs/2512.13687) in ArXiv. Weights will be released very soon.
|
| 25 |
+
|
| 26 |
+
## Takeaways
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
By integrating contrastive, self-supervised, and reconstruction learning, we have trained numerous visual tokenizers from scratch. We are seeking to unveil the novel scalability interlinking understanding, generation, and reconstruction.
|
| 30 |
+
|
| 31 |
+
- **Same FLOPs in DiT Training, VTP scaling helps better generation.**
|
| 32 |
+
|
| 33 |
+
- **Traditional auto-encoders CANNOT be scaled up for diffusion generative models.**
|
| 34 |
+
|
| 35 |
+
- **Understanding is the key driver for improving the learnability scaling.**
|
| 36 |
+
|
| 37 |
+
- **Parameter, data and training scalability can be seen while representation learning involved.**
|
| 38 |
+
|
| 39 |
+
<div align="center">
|
| 40 |
+
<img src="figures/scaling_v2.png" alt="Overview Figure" width="900"/>
|
| 41 |
+
</div>
|
| 42 |
+
|
| 43 |
+
## Get Checkpoints
|
| 44 |
+
|
| 45 |
+
| Checkpoints |
|
| 46 |
+
|-------|
|
| 47 |
+
| [VTP-S/16](pretrained/vtp-s-hf) |
|
| 48 |
+
| [VTP-B/16](pretrained/vtp-b-hf) |
|
| 49 |
+
| [VTP-L/16](pretrained/vtp-l-hf) |
|
| 50 |
+
|
| 51 |
+
Weights will be released very soon.
|
| 52 |
+
|
| 53 |
+
<details>
|
| 54 |
+
<summary><b style="font-size: 1.1em;">🚀 Click Here to Quick Start </b></summary>
|
| 55 |
+
|
| 56 |
+
```
|
| 57 |
+
pip install -r requirements.txt
|
| 58 |
+
```
|
| 59 |
+
|
| 60 |
+
```python
|
| 61 |
+
import torch
|
| 62 |
+
from PIL import Image
|
| 63 |
+
from torchvision import transforms
|
| 64 |
+
|
| 65 |
+
from vtp.models.vtp_hf import VTPConfig, VTPModel
|
| 66 |
+
from vtp.tokenizers import get_tokenizer
|
| 67 |
+
|
| 68 |
+
model = VTPModel.from_pretrained("pretrained/vtp-l-hf")
|
| 69 |
+
model.eval()
|
| 70 |
+
|
| 71 |
+
# print model parameters
|
| 72 |
+
def count_params(m): return sum(p.numel() for p in m.parameters()) / 1e6
|
| 73 |
+
print(f"Vision Encoder: {count_params(model.trunk):.1f}M")
|
| 74 |
+
print(f"Pixel Decoder: {count_params(model.pixel_decoder):.1f}M")
|
| 75 |
+
print(f"Text Encoder: {count_params(model.text_transformer):.1f}M")
|
| 76 |
+
|
| 77 |
+
preprocess = transforms.Compose([
|
| 78 |
+
transforms.Resize((256, 256)),
|
| 79 |
+
transforms.ToTensor(),
|
| 80 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 81 |
+
])
|
| 82 |
+
image = preprocess(Image.open("figures/dog.png")).unsqueeze(0)
|
| 83 |
+
|
| 84 |
+
# ---------------------------------------------------------------------------------------
|
| 85 |
+
# use it as auto-encoder; rFID=0.36
|
| 86 |
+
# ---------------------------------------------------------------------------------------
|
| 87 |
+
denormalize = transforms.Normalize(
|
| 88 |
+
mean=[-0.485/0.229, -0.456/0.224, -0.406/0.225],
|
| 89 |
+
std=[1/0.229, 1/0.224, 1/0.225]
|
| 90 |
+
)
|
| 91 |
+
with torch.no_grad(), torch.autocast("cuda"):
|
| 92 |
+
latents = model.get_reconstruction_latents(image) # encode
|
| 93 |
+
recon = model.get_latents_decoded_images(latents) # decode
|
| 94 |
+
recon_image = denormalize(recon[0]).clamp(0, 1).permute(1, 2, 0).cpu().numpy()
|
| 95 |
+
Image.fromarray((recon_image * 255).astype("uint8")).save("output/reconstructed.png")
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
# ---------------------------------------------------------------------------------------
|
| 99 |
+
# use it as clip; zero-shot 78.2
|
| 100 |
+
# ---------------------------------------------------------------------------------------
|
| 101 |
+
tokenizer = get_tokenizer('ViT-B-32', context_length=model.config.text_context_length)
|
| 102 |
+
text = tokenizer(["a diagram", "a dog", "a cat", "a person"])
|
| 103 |
+
with torch.no_grad(), torch.autocast("cuda"):
|
| 104 |
+
image_features = model.get_clip_image_feature(image, normalize=True)
|
| 105 |
+
text_features = model.get_clip_text_feature(text, normalize=True)
|
| 106 |
+
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
|
| 107 |
+
print("Label probs:", [f"{p:.4f}" for p in text_probs[0].tolist()])
|
| 108 |
+
|
| 109 |
+
# ---------------------------------------------------------------------------------------
|
| 110 |
+
# use it as ssl feature extractor; linear probing 85.7
|
| 111 |
+
# ---------------------------------------------------------------------------------------
|
| 112 |
+
with torch.no_grad(), torch.autocast("cuda"):
|
| 113 |
+
# get last layer features (cls token + patch tokens)
|
| 114 |
+
features = model.get_last_layer_feature(image)
|
| 115 |
+
cls_token = features['cls_token'] # (B, 1024)
|
| 116 |
+
patch_tokens = features['patch_tokens'] # (B, 256, 1024) for 256x256 image
|
| 117 |
+
|
| 118 |
+
# or get intermediate layer features for linear probing
|
| 119 |
+
intermediate = model.get_intermediate_layers_feature(
|
| 120 |
+
image, n=4, return_class_token=True
|
| 121 |
+
) # returns 4 x (patch_tokens, cls_token), each cls_token is (B, 1024)
|
| 122 |
+
for i in range(1, 5):
|
| 123 |
+
print('Last %d layers:' % i)
|
| 124 |
+
print('Patch tokens shape:', intermediate[-i][0].shape)
|
| 125 |
+
print('Cls token shape:', intermediate[-i][1].shape)
|
| 126 |
+
```
|
| 127 |
+
|
| 128 |
+
</details>
|
| 129 |
+
|
| 130 |
+
## Performance
|
| 131 |
+
|
| 132 |
+
<table>
|
| 133 |
+
<tr>
|
| 134 |
+
<th rowspan="2">Model</th>
|
| 135 |
+
<th colspan="2" style="text-align: center;">Understanding</th>
|
| 136 |
+
<th colspan="1" style="text-align: center;">Reconstruction</th>
|
| 137 |
+
<th colspan="1" style="text-align: center;">Generation</th>
|
| 138 |
+
</tr>
|
| 139 |
+
<tr>
|
| 140 |
+
<th style="text-align: center;">Zero-shot Acc.</th>
|
| 141 |
+
<th style="text-align: center;">Linear Probing</th>
|
| 142 |
+
<th style="text-align: center;">rFID</th>
|
| 143 |
+
<th style="text-align: center;">LightningDiT-XL 80ep<br>nocfg FID-50K</th>
|
| 144 |
+
</tr>
|
| 145 |
+
<tr><td><a href="https://github.com/mlfoundations/open_clip">OpenCLIP</a></td><td style="text-align: center;">74.0</td><td style="text-align: center;">-</td><td style="text-align: center;">-</td><td style="text-align: center;">-</td></tr>
|
| 146 |
+
<tr><td><a href="https://github.com/openai/CLIP">CLIP</a></td><td style="text-align: center;">75.5</td><td style="text-align: center;">-</td><td style="text-align: center;">-</td><td style="text-align: center;">-</td></tr>
|
| 147 |
+
<tr><td><a href="https://github.com/google-research/big_vision">SigLIP</a></td><td style="text-align: center;"><strong>80.5</strong></td><td style="text-align: center;">-</td><td style="text-align: center;">-</td><td style="text-align: center;">-</td></tr>
|
| 148 |
+
<tr><td><a href="https://github.com/facebookresearch/mae">MAE</a></td><td style="text-align: center;">-</td><td style="text-align: center;">85.9</td><td style="text-align: center;">-</td><td style="text-align: center;">-</td></tr>
|
| 149 |
+
<tr><td><a href="https://github.com/facebookresearch/dinov2">DINOv2</a></td><td style="text-align: center;">-</td><td style="text-align: center;"><strong>86.7</strong></td><td style="text-align: center;">-</td><td style="text-align: center;">-</td></tr>
|
| 150 |
+
<tr><td><a href="https://github.com/FoundationVision/UniTok">UniTok</a></td><td style="text-align: center;">70.8</td><td style="text-align: center;">-</td><td style="text-align: center;">0.41</td><td style="text-align: center;">-</td></tr>
|
| 151 |
+
<tr><td><a href="https://github.com/mit-han-lab/vila-u">VILA-U</a></td><td style="text-align: center;">73.3</td><td style="text-align: center;">-</td><td style="text-align: center;">1.80</td><td style="text-align: center;">-</td></tr>
|
| 152 |
+
<tr><td><a href="https://github.com/hustvl/LightningDiT">VA-VAE-f16d32</a></td><td style="text-align: center;">-</td><td style="text-align: center;">-</td><td style="text-align: center;">0.28</td><td style="text-align: center;">4.29</td></tr>
|
| 153 |
+
<tr><td><a href="https://github.com/hustvl/LightningDiT">VA-VAE-f16d64</a></td><td style="text-align: center;">-</td><td style="text-align: center;">-</td><td style="text-align: center;"><strong>0.15</strong></td><td style="text-align: center;">-</td></tr>
|
| 154 |
+
<tr><td><a href="https://github.com/bytetriper/RAE">RAE-f16d768</a></td><td style="text-align: center;">-</td><td style="text-align: center;">84.5</td><td style="text-align: center;">0.57</td><td style="text-align: center;">4.28</td></tr>
|
| 155 |
+
<tr><td><b>VTP-S-f16d64 (ours)</b></td><td style="text-align: center;">66.7</td><td style="text-align: center;">77.5</td><td style="text-align: center;">0.98</td><td style="text-align: center;">5.46</td></tr>
|
| 156 |
+
<tr><td><b>VTP-B-f16d64 (ours)</b></td><td style="text-align: center;">73.2</td><td style="text-align: center;">81.0</td><td style="text-align: center;">0.74</td><td style="text-align: center;">3.88</td></tr>
|
| 157 |
+
<tr><td><b>VTP-L-f16d64 (ours)</b></td><td style="text-align: center;">78.2</td><td style="text-align: center;">85.7</td><td style="text-align: center;">0.36</td><td style="text-align: center;"><strong>2.81</strong></td></tr>
|
| 158 |
+
</table>
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
## Introduction
|
| 162 |
+
|
| 163 |
+
The quality of the latent space in visual tokenizers (e.g., VAEs) is crucial for modern generative models. However, the standard reconstruction-based training paradigm produces a latent space that is biased towards low-level information, leading to a foundation flaw: better pixel-level accuracy does not lead to higher-quality generation.
|
| 164 |
+
This implies that pouring extensive compute into visual tokenizer pre-training translates poorly to improved performance in generation.
|
| 165 |
+
|
| 166 |
+
We identify this as the **"pre-training scaling problem"** and suggest a necessary shift: to be effective for generation, a latent space must concisely represent high-level semantics.
|
| 167 |
+
We present visual tokenizer pre-training, **VTP**, a unified visual tokenizer pre-training framework, pioneering the joint optimization of image-text contrastive, self-supervised, and reconstruction losses. Our large-scale study reveals two principal findings: (1) understanding is a key driver of generation, and (2) much better scaling properties, where generative performance scales effectively with compute, parameters, and data allocated to the pretraining of the visual tokenizer. After large-scale pre-training, our tokenizer delivers a competitive profile (78.2 zero-shot accuracy, 0.36 rFID) and 3× faster convergence on generation compared to advanced distillation methods. More importantly, it scales effectively: without modifying standard DiT training specs, solely investing more FLOPS in pretraining VTP achieves 65.8\% FID improvement in downstream generation, while conventional autoencoder stagnates very early at 1/10 FLOPS.
|
| 168 |
+
|
| 169 |
+
<div align="center">
|
| 170 |
+
<img src="figures/overview.png" alt="Overview Figure" width="900"/>
|
| 171 |
+
</div>
|
| 172 |
+
|
| 173 |
+
## Evaluation
|
| 174 |
+
|
| 175 |
+
#### Installation
|
| 176 |
+
|
| 177 |
+
```bash
|
| 178 |
+
conda create -n vtp python=3.10
|
| 179 |
+
conda activate vtp
|
| 180 |
+
git submodule update --init --recursive
|
| 181 |
+
pip install -r requirements.txt
|
| 182 |
+
```
|
| 183 |
+
|
| 184 |
+
#### Zero-shot Classification
|
| 185 |
+
|
| 186 |
+
Modify the corresponding paths in ``scripts/test_zero_shot_hf.sh``. Run:
|
| 187 |
+
```
|
| 188 |
+
bash scripts/test_zero_shot_hf.sh
|
| 189 |
+
```
|
| 190 |
+
|
| 191 |
+
#### Linear Probing Classification
|
| 192 |
+
|
| 193 |
+
Modify the corresponding paths in ``scripts/test_linear_probing_hf.sh``. Run:
|
| 194 |
+
```
|
| 195 |
+
bash scripts/test_linear_probing_hf.sh
|
| 196 |
+
```
|
| 197 |
+
|
| 198 |
+
#### ImageNet Reconstruction
|
| 199 |
+
|
| 200 |
+
Modify the corresponding paths in ``scripts/test_reconstruction_hf.sh``. Run:
|
| 201 |
+
```
|
| 202 |
+
bash scripts/test_reconstruction_hf.sh
|
| 203 |
+
```
|
| 204 |
+
|
| 205 |
+
#### ImageNet Generation
|
| 206 |
+
|
| 207 |
+
We use [LightningDiT](https://github.com/hustvl/LightningDiT) codes to evaluate our generation performance.
|
| 208 |
+
|
| 209 |
+
Feature extraction:
|
| 210 |
+
```
|
| 211 |
+
bash generation/scripts/extract_features_vtp.sh generation/configs/train_vtp_l_dit_xl.yaml
|
| 212 |
+
```
|
| 213 |
+
|
| 214 |
+
LightningDiT training:
|
| 215 |
+
```
|
| 216 |
+
bash generation/scripts/train_lightningdit_vtp.sh generation/configs/train_vtp_l_dit_xl.yaml
|
| 217 |
+
```
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
LightningDiT sampling:
|
| 221 |
+
```
|
| 222 |
+
bash generation/scripts/inference_lightningdit_vtp.sh generation/configs/train_vtp_l_dit_xl.yaml
|
| 223 |
+
```
|
| 224 |
+
|
| 225 |
+
## Acknowledgements
|
| 226 |
+
|
| 227 |
+
Our pre-training codes are built upon [OpenCLIP](https://github.com/mlfoundations/open_clip) and [DINOv2](https://github.com/facebookresearch/dinov2). Our final model variant uses [DINOv3](https://github.com/facebookresearch/dinov3) architecture.
|
| 228 |
+
|
| 229 |
+
We use [LightningDiT](https://github.com/hustvl/LightningDiT) for generation evaluation.
|
| 230 |
+
|
| 231 |
+
Thanks for their great codes.
|
| 232 |
+
|
| 233 |
+
## Citation
|
| 234 |
+
|
| 235 |
+
```bibtex
|
| 236 |
+
@article{vtp,
|
| 237 |
+
title={Towards Scalable Pre-training of Visual Tokenizers for Generation},
|
| 238 |
+
author={Yao, Jingfeng and Song, Yuda and Zhou, Yucong and Wang, Xinggang},
|
| 239 |
+
journal={arXiv preprint arXiv:2512.13687},
|
| 240 |
+
year={2025}
|
| 241 |
+
}
|
| 242 |
+
```
|
| 243 |
+
|
| 244 |
+
## Contact Us
|
| 245 |
+
|
| 246 |
+
Contact us at [email protected].
|
config.json
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"VTPModel"
|
| 4 |
+
],
|
| 5 |
+
"decoder_depth": 24,
|
| 6 |
+
"decoder_embed_dim": 1024,
|
| 7 |
+
"decoder_ffn_layer": "swiglu",
|
| 8 |
+
"decoder_init_values": null,
|
| 9 |
+
"decoder_norm_layer": "layernorm",
|
| 10 |
+
"decoder_num_heads": 16,
|
| 11 |
+
"decoder_use_qk_norm": false,
|
| 12 |
+
"dtype": "float32",
|
| 13 |
+
"image_size": 256,
|
| 14 |
+
"init_logit_bias": null,
|
| 15 |
+
"init_logit_scale": null,
|
| 16 |
+
"model_type": "vtp",
|
| 17 |
+
"nonscalar_logit_scale": false,
|
| 18 |
+
"text_context_length": 77,
|
| 19 |
+
"text_depth": 12,
|
| 20 |
+
"text_embed_cls": false,
|
| 21 |
+
"text_embed_dim": 768,
|
| 22 |
+
"text_ls_init_value": null,
|
| 23 |
+
"text_mlp_ratio": 4.0,
|
| 24 |
+
"text_no_causal_mask": false,
|
| 25 |
+
"text_num_heads": 12,
|
| 26 |
+
"text_output_tokens": false,
|
| 27 |
+
"text_pad_id": 0,
|
| 28 |
+
"text_pool_type": "argmax",
|
| 29 |
+
"text_proj_bias": false,
|
| 30 |
+
"text_proj_type": "linear",
|
| 31 |
+
"text_quick_gelu": false,
|
| 32 |
+
"text_vocab_size": 49408,
|
| 33 |
+
"train_clip": true,
|
| 34 |
+
"train_reconstruction": true,
|
| 35 |
+
"transformers_version": "4.56.0.dev0",
|
| 36 |
+
"vision_bottleneck_ae_only": true,
|
| 37 |
+
"vision_clip_feat": "cls",
|
| 38 |
+
"vision_depth": 24,
|
| 39 |
+
"vision_embed_dim": 1024,
|
| 40 |
+
"vision_feature_bottleneck": 64,
|
| 41 |
+
"vision_ffn_layer": "swiglu",
|
| 42 |
+
"vision_init_values": null,
|
| 43 |
+
"vision_mlp_ratio": 4,
|
| 44 |
+
"vision_norm_layer": "rmsnorm",
|
| 45 |
+
"vision_num_heads": 16,
|
| 46 |
+
"vision_patch_size": 16,
|
| 47 |
+
"vision_use_qk_norm": false
|
| 48 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:de5df2006083a9536c4d3ea36c6ae2181ec604e06550f1b2d7cece3b16aac32f
|
| 3 |
+
size 2926368188
|