Update pintar.py
Browse files
pintar.py
CHANGED
|
@@ -20,7 +20,7 @@ def Lab2RGB_out(img_lab):
|
|
| 20 |
img_ab = img_lab[:,1:,:,:]
|
| 21 |
img_l = img_l + 50
|
| 22 |
pred_lab = torch.cat((img_l, img_ab), 1)[0,...].numpy()
|
| 23 |
-
out = (np.clip(color.lab2rgb(pred_lab.transpose(1, 2, 0)), 0, 1)
|
| 24 |
return out
|
| 25 |
|
| 26 |
def RGB2Lab(inputs):
|
|
@@ -34,11 +34,11 @@ def Normalize(inputs):
|
|
| 34 |
return lab.astype('float32')
|
| 35 |
|
| 36 |
def numpy2tensor(inputs):
|
| 37 |
-
out = torch.from_numpy(inputs.transpose(2,
|
| 38 |
return out
|
| 39 |
|
| 40 |
def tensor2numpy(inputs):
|
| 41 |
-
out = inputs[0
|
| 42 |
return out
|
| 43 |
|
| 44 |
def preprocessing(inputs):
|
|
@@ -49,41 +49,139 @@ def preprocessing(inputs):
|
|
| 49 |
return img.unsqueeze(0), img_lab.unsqueeze(0)
|
| 50 |
|
| 51 |
if __name__ == "__main__":
|
| 52 |
-
parser = argparse.ArgumentParser()
|
| 53 |
-
parser.add_argument("-r", "--reference", type=str, help="ruta de la imagen de referencia")
|
| 54 |
-
parser.add_argument("-o", "--output", type=str, help="carpeta de salida para las im谩genes coloreadas")
|
| 55 |
-
parser.add_argument("-ckpt", "--model_checkpoint", type=str, help="ruta del modelo de checkpoint")
|
| 56 |
-
args = parser.parse_args()
|
| 57 |
-
|
| 58 |
device = "cuda"
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
while True:
|
| 67 |
-
# ... (resto del c贸digo)
|
| 68 |
-
|
| 69 |
-
with torch.no_grad():
|
| 70 |
-
img2_resize = F.interpolate(img2 / 255., size=(256, 256), mode='bilinear', recompute_scale_factor=False, align_corners=False)
|
| 71 |
-
img1_L_resize = F.interpolate(img1_lab[:,:1,:,:] / 50., size=(256, 256), mode='bilinear', recompute_scale_factor=False, align_corners=False)
|
| 72 |
-
|
| 73 |
-
color_vector = colorEncoder(img2_resize)
|
| 74 |
-
|
| 75 |
-
fake_ab = colorUNet((img1_L_resize, color_vector))
|
| 76 |
-
fake_ab = F.interpolate(fake_ab * 110, size=(height, width), mode='bilinear', recompute_scale_factor=False, align_corners=False)
|
| 77 |
-
|
| 78 |
-
fake_img = torch.cat((img1_lab[:,:1,:,:], fake_ab), 1)
|
| 79 |
-
fake_img = Lab2RGB_out(fake_img)
|
| 80 |
|
| 81 |
-
|
| 82 |
-
if not os.path.exists(out_folder):
|
| 83 |
-
os.makedirs(out_folder)
|
| 84 |
-
out_img_path = os.path.join(out_folder, f'{img_name}_color.png')
|
| 85 |
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
img_ab = img_lab[:,1:,:,:]
|
| 21 |
img_l = img_l + 50
|
| 22 |
pred_lab = torch.cat((img_l, img_ab), 1)[0,...].numpy()
|
| 23 |
+
out = (np.clip(color.lab2rgb(pred_lab.transpose(1, 2, 0)), 0, 1)* 255).astype("uint8")
|
| 24 |
return out
|
| 25 |
|
| 26 |
def RGB2Lab(inputs):
|
|
|
|
| 34 |
return lab.astype('float32')
|
| 35 |
|
| 36 |
def numpy2tensor(inputs):
|
| 37 |
+
out = torch.from_numpy(inputs.transpose(2,0,1))
|
| 38 |
return out
|
| 39 |
|
| 40 |
def tensor2numpy(inputs):
|
| 41 |
+
out = inputs[0,...].detach().cpu().numpy().transpose(1,2,0)
|
| 42 |
return out
|
| 43 |
|
| 44 |
def preprocessing(inputs):
|
|
|
|
| 49 |
return img.unsqueeze(0), img_lab.unsqueeze(0)
|
| 50 |
|
| 51 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
device = "cuda"
|
| 53 |
|
| 54 |
+
parser = argparse.ArgumentParser()
|
| 55 |
+
parser.add_argument("--path", type=str, default=None, help="path of input image")
|
| 56 |
+
parser.add_argument("--size", type=int, default=None)
|
| 57 |
+
parser.add_argument("--ckpt", type=str, default=None, help="path of model weight")
|
| 58 |
+
parser.add_argument("-ne", "--no_extractor", action='store_true', help="Do not segment the manga panels.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
+
args = parser.parse_args()
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
+
if args.path:
|
| 63 |
+
test_dir_path = args.path
|
| 64 |
+
if args.size:
|
| 65 |
+
imgsize = args.size
|
| 66 |
+
if args.ckpt:
|
| 67 |
+
ckpt_path = args.ckpt
|
| 68 |
+
if args.no_extractor:
|
| 69 |
+
no_extractor = args.no_extractor
|
| 70 |
+
|
| 71 |
+
ckpt = torch.load(ckpt_path, map_location=lambda storage, loc: storage)
|
| 72 |
+
|
| 73 |
+
colorEncoder = ColorEncoder().to(device)
|
| 74 |
+
colorEncoder.load_state_dict(ckpt["colorEncoder"])
|
| 75 |
+
colorEncoder.eval()
|
| 76 |
+
|
| 77 |
+
colorUNet = ColorUNet().to(device)
|
| 78 |
+
colorUNet.load_state_dict(ckpt["colorUNet"])
|
| 79 |
+
colorUNet.eval()
|
| 80 |
+
|
| 81 |
+
imgs = []
|
| 82 |
+
imgs_lab = []
|
| 83 |
+
|
| 84 |
+
while 1:
|
| 85 |
+
print(f'make sure both manga image and reference images are under this path {test_dir_path}')
|
| 86 |
+
img_path = input("please input the name of image needed to be colorized (with file extension): ")
|
| 87 |
+
img_path = os.path.join(test_dir_path, img_path)
|
| 88 |
+
img_name = os.path.basename(img_path)
|
| 89 |
+
img_name = os.path.splitext(img_name)[0]
|
| 90 |
+
|
| 91 |
+
if no_extractor:
|
| 92 |
+
ref_img_path = os.path.join(test_dir_path, input(f"Enter the reference image path: "))
|
| 93 |
+
|
| 94 |
+
img1 = Image.open(img_path).convert("RGB")
|
| 95 |
+
width, height = img1.size
|
| 96 |
+
img2 = Image.open(ref_img_path).convert("RGB")
|
| 97 |
+
|
| 98 |
+
img1, img1_lab = preprocessing(img1)
|
| 99 |
+
img2, img2_lab = preprocessing(img2)
|
| 100 |
+
|
| 101 |
+
img1 = img1.to(device)
|
| 102 |
+
img1_lab = img1_lab.to(device)
|
| 103 |
+
img2 = img2.to(device)
|
| 104 |
+
img2_lab = img2_lab.to(device)
|
| 105 |
+
|
| 106 |
+
with torch.no_grad():
|
| 107 |
+
img2_resize = F.interpolate(img2 / 255., size=(imgsize, imgsize), mode='bilinear',
|
| 108 |
+
recompute_scale_factor=False, align_corners=False)
|
| 109 |
+
img1_L_resize = F.interpolate(img1_lab[:, :1, :, :] / 50., size=(imgsize, imgsize), mode='bilinear',
|
| 110 |
+
recompute_scale_factor=False, align_corners=False)
|
| 111 |
+
|
| 112 |
+
color_vector = colorEncoder(img2_resize)
|
| 113 |
+
|
| 114 |
+
fake_ab = colorUNet((img1_L_resize, color_vector))
|
| 115 |
+
fake_ab = F.interpolate(fake_ab * 110, size=(height, width), mode='bilinear',
|
| 116 |
+
recompute_scale_factor=False, align_corners=False)
|
| 117 |
+
|
| 118 |
+
fake_img = torch.cat((img1_lab[:, :1, :, :], fake_ab), 1)
|
| 119 |
+
fake_img = Lab2RGB_out(fake_img)
|
| 120 |
+
|
| 121 |
+
out_folder = os.path.dirname(img_path)
|
| 122 |
+
out_name = os.path.basename(img_path)
|
| 123 |
+
out_name = os.path.splitext(out_name)[0]
|
| 124 |
+
out_img_path = os.path.join(out_folder, 'color', f'{out_name}_color.png')
|
| 125 |
+
|
| 126 |
+
# show image
|
| 127 |
+
Image.fromarray(fake_img).show()
|
| 128 |
+
# save image
|
| 129 |
+
folder_path = os.path.join(out_folder, 'color')
|
| 130 |
+
if not os.path.exists(folder_path):
|
| 131 |
+
os.makedirs(folder_path)
|
| 132 |
+
io.imsave(out_img_path, fake_img)
|
| 133 |
+
|
| 134 |
+
continue
|
| 135 |
+
|
| 136 |
+
panel_extractor = PanelExtractor(min_pct_panel=5, max_pct_panel=90)
|
| 137 |
+
panels, masks, panel_masks = panel_extractor.extract(img_path)
|
| 138 |
+
panel_num = len(panels)
|
| 139 |
+
|
| 140 |
+
ref_img_paths = []
|
| 141 |
+
print("Please enter the name of the reference image in order according to the number prompts on the picture")
|
| 142 |
+
for i in range(panel_num):
|
| 143 |
+
ref_img_path = os.path.join(test_dir_path, input(f"{i+1}/{panel_num} reference image:"))
|
| 144 |
+
ref_img_paths.append(ref_img_path)
|
| 145 |
+
|
| 146 |
+
fake_imgs = []
|
| 147 |
+
for i in range(panel_num):
|
| 148 |
+
img1 = Image.fromarray(panels[i]).convert("RGB")
|
| 149 |
+
width, height = img1.size
|
| 150 |
+
img2 = Image.open(ref_img_paths[i]).convert("RGB")
|
| 151 |
+
|
| 152 |
+
img1, img1_lab = preprocessing(img1)
|
| 153 |
+
img2, img2_lab = preprocessing(img2)
|
| 154 |
+
|
| 155 |
+
img1 = img1.to(device)
|
| 156 |
+
img1_lab = img1_lab.to(device)
|
| 157 |
+
img2 = img2.to(device)
|
| 158 |
+
img2_lab = img2_lab.to(device)
|
| 159 |
+
|
| 160 |
+
with torch.no_grad():
|
| 161 |
+
img2_resize = F.interpolate(img2 / 255., size=(imgsize, imgsize), mode='bilinear', recompute_scale_factor=False, align_corners=False)
|
| 162 |
+
img1_L_resize = F.interpolate(img1_lab[:,:1,:,:] / 50., size=(imgsize, imgsize), mode='bilinear', recompute_scale_factor=False, align_corners=False)
|
| 163 |
+
|
| 164 |
+
color_vector = colorEncoder(img2_resize)
|
| 165 |
+
|
| 166 |
+
fake_ab = colorUNet((img1_L_resize, color_vector))
|
| 167 |
+
fake_ab = F.interpolate(fake_ab*110, size=(height, width), mode='bilinear', recompute_scale_factor=False, align_corners=False)
|
| 168 |
+
|
| 169 |
+
fake_img = torch.cat((img1_lab[:,:1,:,:], fake_ab), 1)
|
| 170 |
+
fake_img = Lab2RGB_out(fake_img)
|
| 171 |
+
fake_imgs.append(fake_img)
|
| 172 |
+
|
| 173 |
+
if panel_num == 1:
|
| 174 |
+
out_folder = os.path.dirname(img_path)
|
| 175 |
+
out_name = os.path.basename(img_path)
|
| 176 |
+
out_name = os.path.splitext(out_name)[0]
|
| 177 |
+
out_img_path = os.path.join(out_folder,'color',f'{out_name}_color.png')
|
| 178 |
+
|
| 179 |
+
Image.fromarray(fake_imgs[0]).show()
|
| 180 |
+
folder_path = os.path.join(out_folder, 'color')
|
| 181 |
+
if not os.path.exists(folder_path):
|
| 182 |
+
os.makedirs(folder_path)
|
| 183 |
+
io.imsave(out_img_path, fake_imgs[0])
|
| 184 |
+
else:
|
| 185 |
+
panel_extractor.concatPanels(img_path, fake_imgs, masks, panel_masks)
|
| 186 |
+
|
| 187 |
+
print(f'Colored images have been saved to: {os.path.join(test_dir_path, "color")}')
|