Update finetune.py
Browse files- finetune.py +6 -6
finetune.py
CHANGED
|
@@ -7,7 +7,7 @@ from typing import List
|
|
| 7 |
import torch
|
| 8 |
import transformers
|
| 9 |
|
| 10 |
-
from transformers import LlamaForCausalLM, LlamaTokenizer, LlamaConfig
|
| 11 |
|
| 12 |
from utils import *
|
| 13 |
from collator import Collator
|
|
@@ -27,13 +27,13 @@ def train(args):
|
|
| 27 |
if ddp:
|
| 28 |
device_map = {"": local_rank}
|
| 29 |
|
| 30 |
-
config =
|
| 31 |
-
tokenizer =
|
| 32 |
args.base_model,
|
| 33 |
model_max_length = args.model_max_length,
|
| 34 |
padding_side="right",
|
| 35 |
)
|
| 36 |
-
tokenizer.pad_token_id =
|
| 37 |
gradient_checkpointing = True
|
| 38 |
|
| 39 |
train_data, valid_data = load_datasets(args)
|
|
@@ -48,7 +48,7 @@ def train(args):
|
|
| 48 |
collator = Collator(args, tokenizer)
|
| 49 |
|
| 50 |
|
| 51 |
-
model =
|
| 52 |
args.base_model,
|
| 53 |
# torch_dtype=torch.float16,
|
| 54 |
device_map=device_map,
|
|
@@ -85,7 +85,7 @@ def train(args):
|
|
| 85 |
eval_steps=args.save_and_eval_steps,
|
| 86 |
save_steps=args.save_and_eval_steps,
|
| 87 |
output_dir=args.output_dir,
|
| 88 |
-
save_total_limit=
|
| 89 |
load_best_model_at_end=True,
|
| 90 |
deepspeed=args.deepspeed,
|
| 91 |
ddp_find_unused_parameters=False if ddp else None,
|
|
|
|
| 7 |
import torch
|
| 8 |
import transformers
|
| 9 |
|
| 10 |
+
from transformers import LlamaForCausalLM, LlamaTokenizer, LlamaConfig, AutoTokenizer, AutoModelForCausalLM, AutoConfig
|
| 11 |
|
| 12 |
from utils import *
|
| 13 |
from collator import Collator
|
|
|
|
| 27 |
if ddp:
|
| 28 |
device_map = {"": local_rank}
|
| 29 |
|
| 30 |
+
config = AutoConfig.from_pretrained(args.base_model)
|
| 31 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 32 |
args.base_model,
|
| 33 |
model_max_length = args.model_max_length,
|
| 34 |
padding_side="right",
|
| 35 |
)
|
| 36 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 37 |
gradient_checkpointing = True
|
| 38 |
|
| 39 |
train_data, valid_data = load_datasets(args)
|
|
|
|
| 48 |
collator = Collator(args, tokenizer)
|
| 49 |
|
| 50 |
|
| 51 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 52 |
args.base_model,
|
| 53 |
# torch_dtype=torch.float16,
|
| 54 |
device_map=device_map,
|
|
|
|
| 85 |
eval_steps=args.save_and_eval_steps,
|
| 86 |
save_steps=args.save_and_eval_steps,
|
| 87 |
output_dir=args.output_dir,
|
| 88 |
+
save_total_limit=20,
|
| 89 |
load_best_model_at_end=True,
|
| 90 |
deepspeed=args.deepspeed,
|
| 91 |
ddp_find_unused_parameters=False if ddp else None,
|