import torch import torch.nn as nn import torch.nn.functional as F import math from typing import Optional, Tuple, Union, List # ============================================================================ # TRANSFORMERS COMPATIBILITY # ============================================================================ from transformers import PretrainedConfig from transformers.modeling_utils import PreTrainedModel class MixtureOfRecursionsConfig(PretrainedConfig): """Configuration class for MixtureOfRecursions model.""" model_type = "mixture_of_recursions" def __init__( self, vocab_size=31985, d_model=384, n_layers=12, n_heads=6, max_steps=4, dim_feedforward=2048, dropout=0.1, max_seq_len=128, router_type="adaptive", padding_idx=0, pos_encoding="learned", hidden_size=None, num_hidden_layers=None, num_attention_heads=None, intermediate_size=None, max_position_embeddings=None, **kwargs ): super().__init__(**kwargs) self.vocab_size = vocab_size self.d_model = d_model self.n_layers = n_layers self.n_heads = n_heads self.max_steps = max_steps self.dim_feedforward = dim_feedforward self.dropout = dropout self.max_seq_len = max_seq_len self.router_type = router_type self.padding_idx = padding_idx self.pos_encoding = pos_encoding self.hidden_size = hidden_size or d_model self.num_hidden_layers = num_hidden_layers or n_layers self.num_attention_heads = num_attention_heads or n_heads self.intermediate_size = intermediate_size or dim_feedforward self.max_position_embeddings = max_position_embeddings or max_seq_len # ============================================================================ # EMBEDDINGS MODULE # ============================================================================ DEFAULT_BASE = 10000.0 DEFAULT_CUTOFFS = [2000, 10000] DEFAULT_DIV_VAL = 4.0 class PositionalEncoding(nn.Module): """Sinusoidal positional encoding for transformer models.""" def __init__(self, d_model: int, max_seq_len: int = 512, dropout: float = 0.1): super().__init__() self.d_model = d_model self.dropout = nn.Dropout(dropout) pe = torch.zeros(max_seq_len, d_model) position = torch.arange(0, max_seq_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(DEFAULT_BASE) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term[:, :-1] if d_model % 2 == 1 else div_term) self.register_buffer('pe', pe.unsqueeze(0)) def forward(self, x: torch.Tensor) -> torch.Tensor: batch_size, seq_len, d_model = x.size() if d_model != self.d_model: raise ValueError(f"Input dimension {d_model} does not match d_model {self.d_model}") x = x + self.pe[:, :seq_len] return self.dropout(x) class LearnedPositionalEmbedding(nn.Module): """Learned positional embeddings for transformer models.""" def __init__(self, max_seq_len: int, d_model: int, dropout: float = 0.1): super().__init__() self.max_seq_len = max_seq_len self.d_model = d_model self.pos_embedding = nn.Embedding(max_seq_len, d_model) self.dropout = nn.Dropout(dropout) nn.init.normal_(self.pos_embedding.weight, std=0.02) def forward(self, x: torch.Tensor) -> torch.Tensor: batch_size, seq_len, d_model = x.size() if seq_len > self.max_seq_len: raise ValueError(f"Sequence length {seq_len} exceeds maximum {self.max_seq_len}") if d_model != self.d_model: raise ValueError(f"Input dimension {d_model} does not match d_model {self.d_model}") positions = torch.arange(seq_len, device=x.device).unsqueeze(0).expand(batch_size, -1) pos_emb = self.pos_embedding(positions) x = x + pos_emb return self.dropout(x) class RotaryPositionalEmbedding(nn.Module): """Rotary Positional Embedding (RoPE) for transformer models.""" def __init__(self, d_model: int, max_seq_len: int = 2048, base: float = DEFAULT_BASE): super().__init__() self.d_model = d_model self.max_seq_len = max_seq_len self.base = base inv_freq = 1.0 / (base ** (torch.arange(0, d_model, 2).float() / d_model)) self.register_buffer('inv_freq', inv_freq) self._seq_len_cached = 0 self._cos_cached = None self._sin_cached = None def _update_cos_sin_cache(self, seq_len: int, device: torch.device, dtype: torch.dtype) -> None: if seq_len > self._seq_len_cached: self._seq_len_cached = seq_len t = torch.arange(seq_len, device=device, dtype=torch.float32) freqs = torch.outer(t, self.inv_freq) self._cos_cached = freqs.cos().to(dtype) self._sin_cached = freqs.sin().to(dtype) def _rotate_half(self, x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor: x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:] return torch.cat([x1 * cos - x2 * sin, x1 * sin + x2 * cos], dim=-1) def forward(self, q: torch.Tensor, k: torch.Tensor, start_pos: int = 0) -> Tuple[torch.Tensor, torch.Tensor]: batch_size, seq_len, num_heads, head_dim = q.shape self._update_cos_sin_cache(start_pos + seq_len, q.device, q.dtype) cos = self._cos_cached[start_pos:start_pos + seq_len, :head_dim // 2].view(1, seq_len, 1, -1) sin = self._sin_cached[start_pos:start_pos + seq_len, :head_dim // 2].view(1, seq_len, 1, -1) q = q.transpose(1, 2).reshape(batch_size * num_heads, seq_len, head_dim) k = k.transpose(1, 2).reshape(batch_size * num_heads, seq_len, head_dim) q_rot = self._rotate_half(q, cos, sin) k_rot = self._rotate_half(k, cos, sin) q_rot = q_rot.reshape(batch_size, num_heads, seq_len, head_dim).transpose(1, 2) k_rot = k_rot.reshape(batch_size, num_heads, seq_len, head_dim).transpose(1, 2) return q_rot, k_rot class TechEmbeddingLayer(nn.Module): """Comprehensive embedding layer with token and positional embeddings.""" def __init__( self, vocab_size: int, d_model: int, max_seq_len: int = 512, dropout: float = 0.1, padding_idx: int = 0, pos_encoding: str = "learned", layer_norm: bool = True, ): super().__init__() self.d_model = d_model self.vocab_size = vocab_size self.padding_idx = padding_idx self.pos_encoding_type = pos_encoding.lower() self.token_embedding = nn.Embedding(vocab_size, d_model, padding_idx=padding_idx) if pos_encoding == "sinusoidal": self.pos_encoding = PositionalEncoding(d_model, max_seq_len, dropout) elif pos_encoding == "learned": self.pos_encoding = LearnedPositionalEmbedding(max_seq_len, d_model, dropout) elif pos_encoding == "rope": self.pos_encoding = RotaryPositionalEmbedding(d_model, max_seq_len) else: raise ValueError(f"Unknown positional encoding type: {pos_encoding}") self.layer_norm = nn.LayerNorm(d_model) if layer_norm else nn.Identity() self.dropout = nn.Dropout(dropout) self._init_weights() def _init_weights(self) -> None: nn.init.normal_(self.token_embedding.weight, mean=0.0, std=0.02) if self.padding_idx is not None: nn.init.constant_(self.token_embedding.weight[self.padding_idx], 0.0) def forward(self, input_ids: torch.Tensor) -> torch.Tensor: if (input_ids >= self.vocab_size).any(): raise ValueError(f"Input IDs contain values >= vocab_size ({self.vocab_size})") embeddings = self.token_embedding(input_ids) if self.pos_encoding_type != "rope": embeddings = self.pos_encoding(embeddings) embeddings = self.layer_norm(embeddings) return self.dropout(embeddings) def get_positional_encoding(self) -> Optional[nn.Module]: return self.pos_encoding if self.pos_encoding_type == "rope" else None def create_padding_mask(input_ids: torch.Tensor, padding_idx: int = 0) -> torch.Tensor: return input_ids == padding_idx def create_causal_mask(seq_len: int, device: torch.device) -> torch.Tensor: return torch.triu(torch.ones(seq_len, seq_len, device=device), diagonal=1).bool() # ============================================================================ # MODEL CONSTANTS # ============================================================================ DEFAULT_D_MODEL = 512 DEFAULT_N_HEADS = 8 DEFAULT_N_LAYERS = 6 DEFAULT_MAX_STEPS = 4 DEFAULT_DIM_FEEDFORWARD = 2048 DEFAULT_DROPOUT = 0.1 DEFAULT_MAX_SEQ_LEN = 512 DEFAULT_PADDING_IDX = 0 DEFAULT_ROUTER_TYPE = "adaptive" DEFAULT_VOCAB_SIZE = 10000 # ============================================================================ # MODEL COMPONENTS # ============================================================================ class MultiHeadAttention(nn.Module): """Multi-head attention mechanism optimized for technical content.""" def __init__(self, d_model: int, n_heads: int, dropout: float = DEFAULT_DROPOUT): super().__init__() if d_model % n_heads != 0: raise ValueError(f"d_model ({d_model}) must be divisible by n_heads ({n_heads})") self.d_model = d_model self.n_heads = n_heads self.d_k = d_model // n_heads self.w_q = nn.Linear(d_model, d_model, bias=False) self.w_k = nn.Linear(d_model, d_model, bias=False) self.w_v = nn.Linear(d_model, d_model, bias=False) self.w_o = nn.Linear(d_model, d_model) self.dropout = nn.Dropout(dropout) self._init_weights() def _init_weights(self) -> None: for module in [self.w_q, self.w_k, self.w_v, self.w_o]: nn.init.xavier_uniform_(module.weight) if hasattr(module, 'bias') and module.bias is not None: nn.init.zeros_(module.bias) def forward( self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, mask: Optional[torch.Tensor] = None, pos_encoding: Optional[nn.Module] = None ) -> torch.Tensor: batch_size, seq_len, _ = query.size() Q = self.w_q(query).view(batch_size, seq_len, self.n_heads, self.d_k).transpose(1, 2) K = self.w_k(key).view(batch_size, seq_len, self.n_heads, self.d_k).transpose(1, 2) V = self.w_v(value).view(batch_size, seq_len, self.n_heads, self.d_k).transpose(1, 2) if pos_encoding is not None: Q, K = pos_encoding(Q, K) scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_k) if mask is not None: mask = mask.unsqueeze(1).expand(batch_size, self.n_heads, seq_len, seq_len) scores = scores.masked_fill(mask, float('-inf')) attention_weights = F.softmax(scores, dim=-1) attention_weights = self.dropout(attention_weights) attended = torch.matmul(attention_weights, V) attended = attended.transpose(1, 2).contiguous().view(batch_size, seq_len, self.d_model) return self.w_o(attended) class FeedForward(nn.Module): """Position-wise feed-forward network with GELU activation.""" def __init__(self, d_model: int, dim_feedforward: int, dropout: float = DEFAULT_DROPOUT): super().__init__() self.linear1 = nn.Linear(d_model, dim_feedforward) self.linear2 = nn.Linear(dim_feedforward, d_model) self.dropout = nn.Dropout(dropout) nn.init.xavier_uniform_(self.linear1.weight) nn.init.zeros_(self.linear1.bias) nn.init.xavier_uniform_(self.linear2.weight) nn.init.zeros_(self.linear2.bias) def forward(self, x: torch.Tensor) -> torch.Tensor: x = F.gelu(self.linear1(x)) x = self.dropout(x) return self.linear2(x) class RecursionRouter(nn.Module): """Router to determine recursion steps for technical problem processing.""" def __init__(self, d_model: int, max_steps: int = DEFAULT_MAX_STEPS, router_type: str = DEFAULT_ROUTER_TYPE): super().__init__() self.max_steps = max_steps self.router_type = router_type.lower() if self.router_type == "adaptive": self.complexity_classifier = nn.Sequential( nn.Linear(d_model, d_model // 4), nn.GELU(), nn.Dropout(DEFAULT_DROPOUT), nn.Linear(d_model // 4, max_steps + 1), nn.Softmax(dim=-1) ) elif self.router_type == "fixed": self.register_buffer('fixed_steps', torch.tensor(max_steps, dtype=torch.long)) else: raise ValueError(f"Invalid router_type: {router_type}. Choose 'adaptive' or 'fixed'.") def forward(self, x: torch.Tensor) -> Union[torch.Tensor, int]: if self.router_type == "adaptive": seq_repr = x.mean(dim=1) step_probs = self.complexity_classifier(seq_repr) return torch.argmax(step_probs, dim=-1) return self.fixed_steps.item() class RecursiveTransformerLayer(nn.Module): """Transformer layer with recursive computation capability.""" def __init__( self, d_model: int, n_heads: int, dim_feedforward: int, max_steps: int = DEFAULT_MAX_STEPS, dropout: float = DEFAULT_DROPOUT, router_type: str = DEFAULT_ROUTER_TYPE ): super().__init__() self.max_steps = max_steps self.d_model = d_model self.attention = MultiHeadAttention(d_model, n_heads, dropout) self.feedforward = FeedForward(d_model, dim_feedforward, dropout) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.dropout = nn.Dropout(dropout) self.router = RecursionRouter(d_model, max_steps, router_type) self.step_projections = nn.ModuleList([ nn.Linear(d_model, d_model) for _ in range(max_steps) ]) for proj in self.step_projections: nn.init.xavier_uniform_(proj.weight) nn.init.zeros_(proj.bias) def forward( self, x: torch.Tensor, mask: Optional[torch.Tensor] = None, pos_encoding: Optional[nn.Module] = None ) -> Tuple[torch.Tensor, torch.Tensor]: steps = self.router(x) if isinstance(steps, (int, torch.Tensor)) and not torch.is_tensor(steps): return self._recursive_forward_fixed(x, mask, steps, pos_encoding) return self._recursive_forward_adaptive(x, mask, steps, pos_encoding) def _recursive_forward_fixed( self, x: torch.Tensor, mask: Optional[torch.Tensor], num_steps: int, pos_encoding: Optional[nn.Module] ) -> Tuple[torch.Tensor, torch.Tensor]: device = x.device batch_size = x.shape[0] computation_loss = torch.tensor(0.0, device=device) for step in range(min(num_steps, self.max_steps)): step_input = self.step_projections[step](x) if step < len(self.step_projections) else x attended = self.attention(step_input, step_input, step_input, mask, pos_encoding) x = self.norm1(x + self.dropout(attended)) fed_forward = self.feedforward(x) x = self.norm2(x + self.dropout(fed_forward)) computation_loss += torch.tensor(0.1, device=device) * batch_size return x, computation_loss def _recursive_forward_adaptive( self, x: torch.Tensor, mask: Optional[torch.Tensor], steps: torch.Tensor, pos_encoding: Optional[nn.Module] ) -> Tuple[torch.Tensor, torch.Tensor]: batch_size, seq_len, d_model = x.shape device = x.device max_batch_steps = int(steps.max().item()) computation_loss = torch.tensor(0.0, device=device) active_batches = torch.ones(batch_size, device=device, dtype=torch.bool) for step in range(min(max_batch_steps, self.max_steps)): step_mask = (steps > step) & active_batches if not step_mask.any(): break step_input = self.step_projections[step](x) if step < len(self.step_projections) else x attended = self.attention(step_input, step_input, step_input, mask, pos_encoding) attended = torch.where(step_mask.unsqueeze(-1).unsqueeze(-1), attended, torch.zeros_like(attended)) x = self.norm1(x + self.dropout(attended)) fed_forward = self.feedforward(x) fed_forward = torch.where(step_mask.unsqueeze(-1).unsqueeze(-1), fed_forward, torch.zeros_like(fed_forward)) x = self.norm2(x + self.dropout(fed_forward)) computation_loss += torch.tensor(0.1, device=device) * step_mask.sum() active_batches &= (steps > step) return x, computation_loss # ============================================================================ # PRETRAINED MODEL WRAPPER # ============================================================================ class MixtureOfRecursionsPreTrainedModel(PreTrainedModel): """PreTrainedModel wrapper for MixtureOfRecursions.""" config_class = MixtureOfRecursionsConfig base_model_prefix = "model" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize weights.""" if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.d_model ** -0.5) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.d_model ** -0.5) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) class MixtureOfRecursions(MixtureOfRecursionsPreTrainedModel): """Transformer model with mixture of recursive layers for technical content.""" def __init__(self, config: MixtureOfRecursionsConfig): super().__init__(config) self.config = config self.d_model = config.d_model self.vocab_size = config.vocab_size self.padding_idx = config.padding_idx self.embeddings = TechEmbeddingLayer( vocab_size=config.vocab_size, d_model=config.d_model, max_seq_len=config.max_seq_len, dropout=config.dropout, padding_idx=config.padding_idx, pos_encoding=config.pos_encoding ) self.layers = nn.ModuleList([ RecursiveTransformerLayer( d_model=config.d_model, n_heads=config.n_heads, dim_feedforward=config.dim_feedforward, max_steps=config.max_steps, dropout=config.dropout, router_type=config.router_type ) for _ in range(config.n_layers) ]) self.final_norm = nn.LayerNorm(config.d_model) self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False) # Initialize weights self.post_init() def forward( self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, return_dict: bool = True ): batch_size, seq_len = input_ids.shape # Create masks padding_mask = create_padding_mask(input_ids, self.padding_idx) if attention_mask is None else (attention_mask == 0) causal_mask = create_causal_mask(seq_len, input_ids.device) combined_mask = padding_mask.unsqueeze(1).expand(batch_size, seq_len, seq_len) | causal_mask.unsqueeze(0) # Forward pass x = self.embeddings(input_ids) pos_encoding = self.embeddings.get_positional_encoding() total_computation_loss = torch.tensor(0.0, device=x.device) for layer in self.layers: x, comp_loss = layer(x, combined_mask, pos_encoding) total_computation_loss += comp_loss x = self.final_norm(x) logits = self.lm_head(x) loss = None if labels is not None: # Shift logits and labels for language modeling shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() loss_fct = nn.CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, self.vocab_size), shift_labels.view(-1)) loss += 0.01 * total_computation_loss # Add computation loss if not return_dict: output = (logits,) return ((loss,) + output) if loss is not None else output from transformers.modeling_outputs import CausalLMOutput return CausalLMOutput( loss=loss, logits=logits, hidden_states=None, attentions=None, ) def generate_step( self, input_ids: torch.Tensor, temperature: float = 1.0, top_k: Optional[int] = None, top_p: Optional[float] = None ) -> torch.Tensor: self.eval() with torch.no_grad(): outputs = self.forward(input_ids, return_dict=True) logits = outputs.logits last_logits = logits[:, -1, :] / temperature if top_k is not None: indices_to_remove = last_logits < torch.topk(last_logits, top_k)[0][..., -1, None] last_logits = last_logits.masked_fill(indices_to_remove, float('-inf')) if top_p is not None: sorted_logits, sorted_indices = torch.sort(last_logits, descending=True) cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) sorted_indices_to_remove = cumulative_probs > top_p sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = False indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) last_logits = last_logits.masked_fill(indices_to_remove, float('-inf')) probs = F.softmax(last_logits, dim=-1) return torch.multinomial(probs, num_samples=1) # Register the model for auto class MixtureOfRecursions.register_for_auto_class("AutoModelForCausalLM") def count_parameters(model: nn.Module) -> Tuple[int, int]: total_params = sum(p.numel() for p in model.parameters()) trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) return total_params, trainable_params def main(): """Test the MixtureOfRecursions model and its components.""" print("Initializing MixtureOfRecursions model...") config = MixtureOfRecursionsConfig( vocab_size=DEFAULT_VOCAB_SIZE, d_model=DEFAULT_D_MODEL, n_layers=DEFAULT_N_LAYERS, n_heads=DEFAULT_N_HEADS, max_steps=DEFAULT_MAX_STEPS, dim_feedforward=DEFAULT_DIM_FEEDFORWARD, dropout=DEFAULT_DROPOUT, router_type=DEFAULT_ROUTER_TYPE ) model = MixtureOfRecursions(config) total_params, trainable_params = count_parameters(model) print(f"Total parameters: {total_params:,}") print(f"Trainable parameters: {trainable_params:,}") print("\nTesting forward pass...") batch_size, seq_len = 4, 128 input_ids = torch.randint(0, DEFAULT_VOCAB_SIZE, (batch_size, seq_len)) attention_mask = torch.ones_like(input_ids) attention_mask[:, -10:] = 0 outputs = model(input_ids, attention_mask, return_dict=True) logits = outputs.logits assert logits.shape == (batch_size, seq_len, DEFAULT_VOCAB_SIZE), f"Unexpected logits shape: {logits.shape}" print(f"Input shape: {input_ids.shape}") print(f"Output logits shape: {logits.shape}") print(f"Expected logits shape: ({batch_size}, {seq_len}, {DEFAULT_VOCAB_SIZE})") print("\nTesting generation step...") next_token = model.generate_step(input_ids[:1], temperature=0.8, top_p=0.9) print(f"Generated next token: {next_token.item()}") print("\nModel test completed successfully!") if __name__ == "__main__": main()