drAbreu commited on
Commit
edf0b6c
·
verified ·
1 Parent(s): cc5022f

End of training

Browse files
Files changed (1) hide show
  1. README.md +10 -10
README.md CHANGED
@@ -25,13 +25,13 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.8150323696841165
29
  - name: Recall
30
  type: recall
31
- value: 0.8530975260682887
32
  - name: F1
33
  type: f1
34
- value: 0.8336306423301415
35
  ---
36
 
37
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -41,11 +41,11 @@ should probably proofread and complete it, then remove this comment. -->
41
 
42
  This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the source_data dataset.
43
  It achieves the following results on the evaluation set:
44
- - Loss: 0.1366
45
- - Accuracy Score: 0.9563
46
- - Precision: 0.8150
47
- - Recall: 0.8531
48
- - F1: 0.8336
49
 
50
  ## Model description
51
 
@@ -77,8 +77,8 @@ No additional optimizer arguments
77
 
78
  | Training Loss | Epoch | Step | Validation Loss | Accuracy Score | Precision | Recall | F1 |
79
  |:-------------:|:-----:|:----:|:---------------:|:--------------:|:---------:|:------:|:------:|
80
- | 0.1136 | 1.0 | 864 | 0.1366 | 0.9534 | 0.8131 | 0.8330 | 0.8229 |
81
- | 0.0804 | 2.0 | 1728 | 0.1366 | 0.9563 | 0.8150 | 0.8531 | 0.8336 |
82
 
83
 
84
  ### Framework versions
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.8158665922411387
29
  - name: Recall
30
  type: recall
31
+ value: 0.8538277302333732
32
  - name: F1
33
  type: f1
34
+ value: 0.8344156307534217
35
  ---
36
 
37
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
41
 
42
  This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the source_data dataset.
43
  It achieves the following results on the evaluation set:
44
+ - Loss: 0.1369
45
+ - Accuracy Score: 0.9565
46
+ - Precision: 0.8159
47
+ - Recall: 0.8538
48
+ - F1: 0.8344
49
 
50
  ## Model description
51
 
 
77
 
78
  | Training Loss | Epoch | Step | Validation Loss | Accuracy Score | Precision | Recall | F1 |
79
  |:-------------:|:-----:|:----:|:---------------:|:--------------:|:---------:|:------:|:------:|
80
+ | 0.1138 | 1.0 | 864 | 0.1357 | 0.9535 | 0.8185 | 0.8297 | 0.8241 |
81
+ | 0.0807 | 2.0 | 1728 | 0.1369 | 0.9565 | 0.8159 | 0.8538 | 0.8344 |
82
 
83
 
84
  ### Framework versions